mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis.

نویسندگان

  • Wei Wan
  • Zhiyuan You
  • Yinfeng Xu
  • Li Zhou
  • Zhunlv Guan
  • Chao Peng
  • Catherine C L Wong
  • Hua Su
  • Tianhua Zhou
  • Hongguang Xia
  • Wei Liu
چکیده

Acetylation is increasingly recognized as one of the major post-translational mechanisms for the regulation of multiple cellular functions in mammalian cells. Acetyltransferase p300, which acetylates histone and non-histone proteins, has been intensively studied in its role in cell growth and metabolism. However, the mechanism underlying the activation of p300 in cells remains largely unknown. Here, we identify the homeostatic sensor mTORC1 as a direct activator of p300. Activated mTORC1 interacts with p300 and phosphorylates p300 at 4 serine residues in the C-terminal domain. Mechanistically, phosphorylation of p300 by mTORC1 prevents the catalytic HAT domain from binding to the RING domain, thereby eliminating intra-molecular inhibition. Functionally, mTORC1-dependent phosphorylation of p300 suppresses cell-starvation-induced autophagy and activates cell lipogenesis. These results uncover p300 as a direct target of mTORC1 and suggest that the mTORC1-p300 pathway plays a pivotal role in cell metabolism by coordinately controlling cell anabolism and catabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation.

mTORC1 plays a key role in autophagy as a negative regulator. The currently known targets of mTORC1 in the autophagy pathway mainly function at early stages of autophagosome formation. Here, we identify that mTORC1 inhibits later stages of autophagy by phosphorylating UVRAG. Under nutrient-enriched conditions, mTORC1 binds and phosphorylates UVRAG. The phosphorylation positively regulates the a...

متن کامل

Regulation of autophagy by the p300 acetyltransferase.

Autophagy is a regulated process of intracellular catabolism required for normal cellular maintenance, as well as serving as an adaptive response under various stress conditions, including starvation. The molecular regulation of autophagy in mammalian cells remains incompletely understood. Here we demonstrate a role for protein acetylation in the execution and regulation of autophagy. In partic...

متن کامل

Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation.

Histone acetyltransferases (HATs) p300 and CREB-binding protein (CBP) function as co-activators for a variety of sequence-specific transcription factors, including AML1. Here, we report that homeodomain-interacting protein kinase-2 (HIPK2) forms a complex with AML1 and p300, and phosphorylates both AML1 and p300 to stimulate transcription activation as well as HAT activities. Phosphorylation of...

متن کامل

mTOR, AMBRA1, and autophagy: An intricate relationship

Autophagy is the primary catabolic cellular degradation process, which generates nutrients and energy to maintain essential cellular activities upon nutrient starvation. The regulation of autophagy is central to the understanding of its mechanisms; post-translational modifications account for the rapid kinetics that control autophagy induction. A recent paper of ours provided 2 important insigh...

متن کامل

PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy

Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1's and PLK1's functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 68 2  شماره 

صفحات  -

تاریخ انتشار 2017